M1. (a) (i) friction
(ii) air resistance
accept drag
friction is insufficient
(iii) Marks awarded for this answer will be determined by the Quality of Written Communication (QWC) as well as the standard of the scientific response. Examiners should also refer to the information on page 5, and apply a 'best-fit' approach to the marking.

0 marks

No relevant content.

Level 1 (1-2 marks)

There is an attempt to explain in terms of forces A and B why the velocity of the cyclist changes between any two points
or
a description of how the velocity changes between any two points.

Level 2 (3-4 marks)

There is an explanation in terms of forces A and B of how the velocity changes between X and Y and between Y and Z
or
a complete description of how the velocity changes from X to Z .
or
an explanation and description of velocity change for either X to Y or Y
to Z

Level 3 (5-6 marks)

There is a clear explanation in terms of forces A and B of how the velocity changes between X and Z
and
a description of the change in velocity between X and Z.
examples of the points made in the response
extra information
X to Y

- at X force A is greater than force B
- cyclist accelerates
- and velocity increases
- as cyclist moves toward Y , force B (air resistance) increases (with increasing velocity)
- resultant force decreases
- cyclist continues to accelerate but at a smaller value
- so velocity continues to increase but at a lower rate

Y to Z

- from Y to Z force B (air resistance) increases
- acceleration decreases
- force B becomes equal to force A
- resultant force is now zero
- acceleration becomes zero
- velocity increases until...
- cyclist travels at constant / terminal velocity accept speed for velocity throughout
(b) (i) 3360
allow 1 mark for correct substitution, ie 140×24 provided no subsequent step accept 3400 for 2 marks if correct substitution is shown
joule / J
do not accept j
do not accept Nm
(ii) decreases
accept an alternative word / description for decrease do not accept slows down
temperature
accept thermal energy
accept heat

```
M2. (a) (i) air resistance/drag/friction (or upthrust) weight/gravitational pull/gravity for 1 mark each
```

(ii) air resistance/friction acts in opposite direction to motion
(iii) Y
(iv) the sky-diver accelerates/his speed increases in downward direction/towards the Earth/falls
for 1 mark each
(b) force X has increased force Y has stayed the same the speed of the sky-diver will stay the same
for 1 mark each
(c) (i) CD
(11) 500
(iii) 50$\}$ (but apply e.c.f. from (i))
(iv) 10 (but apply e.c.f. from (ii) and (iii))
gets 2 marks
or $500 / 50$ or d / t
gets 1 mark

M3. (a) gravity

> accept weight
> do not accept mass
> accept gravitational pull
(b) (i) Initially force L greater than force M accept there is a resultant force downwards
(as speed increases) force M increases accept the resultant force decreases
when $M=L$, (speed is constant)
accept resultant force is 0
accept gravity/weighty for L
accept drag/ upthrust/resistance/friction for M do not accept air resistance for M but penalise only once
(ii) terminal velocity
(iii) 0.15
accept an answer between $0.14-0.16$ an answer of 0.1 gains no credit allow 1 mark for showing correct use of the graph

M4. (a) air(resistance) has greatest effect on paper
(b) paper or both fall faster
(both) fall together
accept same speed or rate

M5. (a) 96
allow 1 mark for correct substitution ie 80×1.2
newton or N
allow Newton do not allow n
(b) (i) direction
(ii) velocity and time are continuous (variables)
answers must refer to both variables
accept the variables are continuous / not categoric
accept the data / 'it' is continuous
accept the data / 'it' is not categoric
(iii) C
velocity is not changing
the $\mathbf{2}$ marks for reason may be scored even if \boldsymbol{A} or \boldsymbol{B} are chosen
accept speed for velocity
accept speed is constant ($9 \mathrm{~m} / \mathrm{s}$)
accept not decelerating
accept not accelerating
accept reached terminal velocity
forces must be balanced
accept forces are equal
accept arrows are the same length / size
or
resultant force is zero
do not accept the arrows are equal

M6. (a) B
reason only scores if B is chosen
> gradient / slope is the steepest / steeper answers must be comparative accept steepest line ignore greatest speed
(b) (velocity includes) direction 'it' refers to velocity

M7. (a) (i) gravitational potential (energy)
(ii) kinetic (energy)
(b) (i) slope or gradient
(ii) area (under graph) do not accept region
(iii) starts at same y-intercept
(ii) student 1 incorrect because $80 \neq 65$
student 2 correct because average velocities similar
ecf from (c)(i)
student 3 incorrect because times are different

